(1) Fermi energy

$$
E_{F}=\frac{\left(3 \pi^{2} n^{2}\right)^{\frac{1}{3}} \hbar^{2}}{2 m}=\frac{\left(3 \pi^{2}\right)^{\frac{1}{3}} \hbar^{2}}{2 d^{2} m}=2.45 \mathrm{eV}
$$

(3)

$$
\varphi_{D}=\frac{2 \pi \hbar c}{e}
$$

$$
(\Phi=B S)
$$

(4)

$$
\begin{aligned}
& \text { 4) } \vec{E}=\vec{E}(t)=\int \frac{d \omega}{2 \pi} \vec{E}(\omega) e^{-i \omega t} \\
& \vec{j}(t)=\int \frac{d \omega}{2 \pi} e^{-i \omega t}-\vec{j}(\omega)=\int \frac{d \omega}{2 \pi} \sigma(\omega) \vec{E}(\omega) e^{-i \omega t}
\end{aligned}
$$

- allows one t lind
when $\vec{E}(t)=\vec{E} \delta(t)$, then $\vec{E}(\omega)=\vec{\varepsilon}$

$$
\begin{aligned}
& \text { chen } E(t)=c \quad \begin{array}{l}
\int \frac{d \omega}{2 \pi} \frac{\sigma_{0}}{1-i \omega \tau} \vec{\varepsilon} e^{-i \omega t}=\vec{\varepsilon} \sigma_{0} \tau^{-1} e^{-\frac{t}{\tau}} \cdot \theta(t) \\
\bar{j}(t)=\vec{\varepsilon} \sigma_{0} \tau^{-1} e^{-\frac{t}{\tau}} \theta(t)
\end{array}
\end{aligned}
$$

another method
Kinetic equation for $\vec{E}=0$

$$
\frac{\partial f_{p}}{\partial t}=-\frac{f_{p}-f_{p}^{0}}{\tau}
$$

$\left(\begin{array}{l}\text { (There are no gradient terms because } \\ \vec{E}=0 \text { and everything is uniform) }\end{array}\right.$ $\vec{E}=0$ and enerybing is unitorn)

$$
\begin{aligned}
& 0 \text { and everything is unitorn) } \\
& f_{p}=f_{p}^{0}+\left(f_{p}-f_{p}^{0}\right)_{t=0} \cdot e^{-\frac{t}{\tau}}
\end{aligned}
$$

All modes relax with the same rater τ !
\rightarrow The whole current relaxes at that rate!

$$
\begin{aligned}
& \text { rate! } \\
& j(t)=j(0) e^{-\frac{t}{\tau}}
\end{aligned}
$$

(5) WL comes from the interference of paths on scales $L<L_{\varphi}$
In 2D $\sigma=\frac{e^{2}}{4 \pi \hbar} k_{F} l-\frac{e^{2}}{\pi^{2} \hbar} \ln \frac{L \varphi}{l}$
Because L_{φ} has a poner-law temperature dependence, it giver the temperature dependence of conductivity

$$
o \alpha \text { cost }-\ln T
$$

The conductivity will be temperature independent when the magnetic length is shorter than L_{φ}

- 4 . the field is found from
is shorter vim.
Therertare, the field is found from the condition

$$
\begin{aligned}
& B L_{\varphi}^{2} \sim \Phi_{0} \\
& B D \tau_{\varphi} \sim \Phi_{0}
\end{aligned} \rightarrow B \sim \frac{\Phi_{0}}{D \tau_{\varphi}}=\frac{\Phi_{0} T^{\alpha}}{D a}
$$

